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Context
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 Radioactive iodine (131I) released in the atmosphere in case of

a nuclear power plant accident.

 Speciation of iodine species: gas phase, aerosols.

 Need to determine their gas-phase stability

(thermodynamic properties, reactivity) and their mass

transfer to liquid phase (kH, a).
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INOx computational methods
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Step 1

Step 2

Energetics:

 Potential energies calculated at the UwB97XD/aug-cc-pV5Z and

UCCSD(T)/CBS (T,Q,5) with wB97XD optimized geometries.

Structures:

 Optimized geometries and vibrational frequencies calculated at the

UwB97XD/ aug-cc-pVTZ level of theory (ECP28 for I).

 Test systematically the stability of the DFT and HF wave functions.

 Aim: Thermochemical properties within chemical accuracy (± 4.18 kJ mol-1)

Step 3

Spin-orbit coupling (SOC in kJ mol-1):

 RASSCF/CASPT2/RASSI

INO INO2 Cis-IONO Trans-IONO IONO2 ICl IBr HI

-4.93 -5.51 -6.76 -5.96 -7.22 -6.78 -7.57 -2.26

Difficulties associated to 

the presence of

heavy elements

Electron correlation

Within valence electrons 

and chemical bonds

Multiconfigurational 

wave functions ?

Unpaired electrons

Relativistic effects

Heavy elements
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INOx computational methods
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Step 4

Thermochemical properties (ΔfH°298K, ΔrH°(T), ΔrG°(T)):

 Isogyric reaction is used to determine the standard enthalpy of formation.
“A reaction in which the number of electron pairs is conserved” from IUPAC Gold Book”

 Set of 4 reactions (x = 1, 2, and 3) 

 INOx + H = I + HNOx

 INOx + H2 = HI + HNOx

 INOx + HCl = ICl + NOx

 INOx + HBr = IBr + NOx

 Standard enthalpies of formation for reference species (kJ mol-1) (JPL 2015)

 Standard enthalpy of formation at 298 K calculations for target species: 
 DrH°298K = DE + DZPE + DddH298K + DSOC

 DrH°298K is obtained using Hess’ law 
DfH°298K(INO) = -DrH°298K + DfH°298K(HI) + DfH°298K(NO) - DfH°298K(H)

From literature [JPL 2015]Calculations

H I H2 HCl HBr HI ICl IBr HNO HONO HNO3

217.997

± 0.001

106.76

± 0.04

0.00 −92.31

± 0.10

−36.29

± 0.16

26.50

± 0.10

17.393

± 0.040

40.807

± 0.14

109.2

± 2.1

−78.45

± 0.80

−143.5

± 0.5
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INOx structures

7

129.8°

129.9°

115.1°

115.1°

2.194 Å

2.192 Å

1.191 Å

1.198 Å

115.7°

115.6°

2.322 Å

2.356 Å

1.130 Å

1.142 Å

2.002 Å

2.030 Å

1.410 Å

1.450 Å

1.190 Å

1.200 Å

1.194 Å

1.200 Å

118.2°

117.3°

111.3°

110.5°

130.5°

131.3°

This work (UwB97XD/aug-cc-pVTZ)

[1] Peterson et al., J. Chem. Phys., 140 (2014), 044308

(CCSD(T)-F12b)

[2] Allan et al., J. Phys Chem. A, 106 (2002), 8634

(B3LYP)

1.172 Å

1.176 Å

1.329 Å

1.362 Å

2.055 Å

2.027 Å

117.9°

116.5°

118.1°

116.8°

1.998 Å

1.984 Å
1.430 Å

1.464 Å

1.156 Å

1.159 Å

109.4°

109.0°

111.7°

110.0°



8

INOx thermodynamics
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UwB97XD/aV5Z//UwB97XD/aVTZ || UCCSD(T)/CBS//UwB97XD/aVTZ

Species
DfH°298 K (kJ mol-1)

This work Literature

INO
121.9 ± 2.0

141.9 ± 5.6
121.3 ± 4.2[3]

INO2

68.2 ± 0.6

69.8 ± 5.5
60.2 ± 4.2 [3]

Cis-IONO
75.5 ± 2.4

65.4 ± 5.6

Trans-IONO
95.3 ± 2.4

83.3 ± 5.6

IONO2

48.5 ± 0.9

35.6 ± 5.5
33.1 [4]

[3] Troe et al., J. Chem. Phys., 64 (1976), 736 (experiments)

[4] Kaltsoyannis et al., Phys. Chem. Chem. Phys., 10 (2008), 1723 (CCSD(T) calculations) 
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INOx microhydration thermodynamics
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UwB97XD/aV5Z//UwB97XD/aVTZ

Species 

INOx + H2O = INOx-H2O 

Number of 

aggregates 

DrH°298 K

(kJ mol-1)

DrG°298 K

(kJ mol-1)

INO 1 −8.9 18.5

INO2 3 −17.7 13.2

Cis-IONO 5 −21.7 10.6

Trans-IONO 7 −25.0 6.2

IONO2 6 −32.0 −0.1

 Exothermic processes.

 IONO2 becomes spontaneous

at ambient temperature.

 Halogen bonds except for INO
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Microhydration as function of temperature
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Microhydration as function of temperature
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Microhydration as function of temperature
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Microhydration as function of temperature
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Microhydration as function of temperature
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 Turbomole and COSMOthermX used in literature:

 Parnis et al., Atmos. Environ., 110 (2015), 27-35

 Dougassa et al., J. Chem. Thermo., 79 (2014), 49-60

 Optimized geometries at the BP/def-TZVP level of theory with m4 

grid.

 er dielectric constant set to ∞

 H2O from COSMOthermX database

 Henry’s Law Constant expressed in MPa (the volatility constant H) 

 conversion to mol L-1 atm-1 (kH)

Henry’s law constants 

computational methods

17
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Henry’s law constants
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COSMOtherm V. 16 



19

Henry’s law constants
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COSMOtherm V. 17 (December 2016) 

y = 0.980 x + 0.472 (R2 = 0.946)  1

 10

 0.1
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Henry’s law constants
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Species

kH (298 K)

(mol L-1 atm-1)

COSMOtherm

INO 4.90  10-2

INO2 4.14  10-3

Cis-IONO 8.74  10-3

Trans-IONO 2.04  10-2

IONO2 3.32  10-2

 Note: 

 kH(298K) (INO2) = 3.00  10-1 mol L-1 atm-1

 Valeur BrNO2 [5]

 kH(298K) (IONO2) = 106 mol L-1 atm-1

 Virtual infinite solubility [5]: IONO2 (aq) + H2O(aq) = HOI(aq) + HNO3 (aq)

[5] Saiz-Lopez et al., Atmos. Chem. Phys., 2014, 14 (23), 13119.
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Henry’s law constants
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COSMOtherm V. 17 

y = 0.849*x – 0.318 (R2 = 0.822)

kH (BrNO2) [mol L-1 atm-1] :

 3.00  10-1 (literature [6])

 1.52  10-2 (whole data)

kH (BrNO2) [mol L-1 atm-1] :

 3.00  10-1 (literature [6])

 1.52  10-2 (whole data)

 1.63  10-1 (inorganic data)

y = 0.849 x – 0.318 (R2 = 0.822)

y = 0.918 x – 0.062 (R2 = 0.777)

y = 0.723 x – 0.919 (R2 = 0.919)

[6] Frenzel et al., J. Phys. Chem. A, 102 (1998), 1329
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Henry’s law constants
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Species
DsolH° (kJ mol-1)

COSMOthermX

INO - 20.5

INO2 - 12.5

Cis-IONO - 17.5

Trans-IONO - 20.1

IONO2 - 18.5
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 Reassessment of literature standard enthalpies of formation for INOx.

 Complete benchmark by performing CASPT2/CASSCF calculations,

 Estimate the corrections due to higher correlation methods such as

CCSDT(Q) (CFour).

 Microhydration processes:

 Extend study to IONO2 + n H2O = IONO2_nH2O (n = 2, 3, …)

 Prediction of Henry’s law constants for iodine-containing species.

 Complete study by using SMD methodology as implemented in Gaussian16

Conclusions and outlook

23
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Thank you for your attention
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