

Modelling of iodine atmospheric chemistry

<u>A. Villard</u>, S. Khanniche, C. Fortin, D. Khiri, V. Fèvre-Nollet, P. Lebègue, L. Cantrel, F. Cousin I. Černušák, F. Louis

Outline

Context

- Thermodynamic properties (gas phase)
 Computational methods
 - > Results
- □ Microhydration (gas phase)
- Henry's law constants (aqueous phase)
 - Computational methods
 - Results

Context

Radioactive iodine (¹³¹I) released in the atmosphere in case of a nuclear power plant accident.

Speciation of iodine species: gas phase, aerosols.

Need to determine their gas-phase stability (thermodynamic properties, reactivity) and their mass transfer to liquid phase $(k_H, \alpha)^{-1}$

Outline

Context

- Thermodynamic properties (gas phase)
 - Computational methods
 - > Results
- □ Microhydration (gas phase)
- Henry's law constants (aqueous phase)
 - Computational methods
 - > Results

INOx computational methods

> Aim: Thermochemical properties within **chemical accuracy** (± 4.18 kJ mol⁻¹)

Step 1

Université

	Opti UwB	Structures: Optimized geometries and vibrational frequencies calculated at the						Difficulties associated to the presence of heavy elements		
	Test systematically the stability of the DFT and HF wave functions.						Electron correlation			
Step 2								Within valence electrons and chemical bonds		
Energetics:										
Potential energies calculated at the UωB97XD/aug-cc-pV5Z and UCCSD(T)/CBS (T,Q,5) with ωB97XD optimized geometries.							5Z and s.	Multiconfigurational wave functions ? Unpaired electrons		
Step 3										
Spin-orbit coupling (SOC in kJ mol ⁻¹): ■ RASSCF/CASPT2/RASSI							Relativistic effects <i>Heavy elements</i>			
	INO	INO ₂	Cis-IONO	Trans-IONO	IONO ₂	ICl	IBr	HI		
-	4.93	-5.51	-6.76	-5.96	-7.22	-6.78	-7.57	-2.26	5	

INOx computational methods

Step 4

- **<u>Thermochemical properties</u>** $(\Delta_{f}H^{\circ}_{298K}, \Delta_{r}H^{\circ}(T), \Delta_{r}G^{\circ}(T)):$
- Isogyric reaction is used to determine the standard enthalpy of formation.
 "A reaction in which the number of electron pairs is conserved" from IUPAC Gold Book"
 - > Set of 4 reactions (x = 1, 2, and 3)
 - INOx + H = I + HNOx
 - INOx + $H_2 = HI + HNOx$
 - limbox + HCl = ICl + NOx
 - INOx + HBr = IBr + NOx
 - Standard enthalpies of formation for reference species (kJ mol⁻¹) (JPL 2015)

Н	Ι	\mathbf{H}_{2}	HCl	HBr	HI	ICl	IBr	HNO	HONO	HNO ₃
217.997	106.76	0.00	-92.31	-36.29	26.50	17.393	40.807	109.2	-78.45	-143.5
± 0.001	± 0.04		± 0.10	± 0.16	± 0.10	± 0.040	± 0.14	± 2.1	± 0.80	± 0.5

Standard enthalpy of formation at 298 K calculations for target species:

$$\Delta_{r} H^{\circ}_{298K} = \Delta E + \Delta ZPE + \Delta ddH_{298K} + \Delta SOC$$

$$\Delta_{r} H^{\circ}_{298K} \text{ is obtained using Hess' law}$$

$$\Delta_{f} H^{\circ}_{298K} (INO) = -\Delta_{r} H^{\circ}_{298K} + \Delta_{f} H^{\circ}_{298K} (HI) + \Delta_{f} H^{\circ}_{298K} (NO) - \Delta_{f} H^{\circ}_{298K} (HI)$$

$$Calculations From literature [JPL 2015]$$

$$6$$

INOx structures

This work (UωB97XD/aug-cc-pVTZ) [1] Peterson *et al.*, J. Chem. Phys., 140 (2014), 044308 (CCSD(T)-F12b) [2] Allan *et al.*, J. Phys Chem. A, 106 (2002), 8634 (B3LYP)

$U \omega B97 X D/a V 5 Z // U \omega B97 X D/a V T Z \parallel U C C S D(T) / C B S // U \omega B97 X D/a V T Z$

Spacing	$\Delta_{\rm f} H^{\circ}_{298 \rm K} (\rm kJ \ mol^{-1})$			
Species	This work	Literature		
INO	$\begin{array}{c} 121.9 \pm 2.0 \\ 141.9 \pm 5.6 \end{array}$	$121.3 \pm 4.2^{[3]}$		
INO ₂	$\begin{array}{c} 68.2 \pm 0.6 \\ 69.8 \pm 5.5 \end{array}$	60.2 ± 4.2 ^[3]		
Cis-IONO	75.5 ± 2.4 65.4 ± 5.6			
Trans-IONO	95.3 ± 2.4 83.3 ± 5.6			
IONO ₂	$\begin{array}{c} 48.5 \pm 0.9 \\ 35.6 \pm 5.5 \end{array}$	33.1 [4]		

[3] Troe et al., J. Chem. Phys., 64 (1976), 736 (experiments)

[4] Kaltsoyannis et al., Phys. Chem. Chem. Phys., 10 (2008), 1723 (CCSD(T) calculations)

Outline

Context

- □ Thermodynamic properties (gas phase)
 - Computational methods
 - > Results

Microhydration (gas phase)

- Henry's law constants (aqueous phase)
 - Computational methods
 - Results

INOx microhydration thermodynamics

Université

Université de Lille Microhydration as function of temperature

Université de Lille Microhydration as function of temperature

Université Microhydration as function of temperature

Université Microhydration as function of temperature

Université Microhydration as function of temperature

Outline

Context

- Thermodynamic properties (gas phase)
 - Computational methods
 - > Results
- Microhydration (gas phase)
- Henry's law constants (aqueous phase)
 - Computational methods
 - > Results

Henry's law constants computational methods

- **Turbomole and COSMOthermX used in literature:**
 - Parnis *et al.*, Atmos. Environ., 110 (2015), 27-35
 - Dougassa *et al.*, J. Chem. Thermo., 79 (2014), 49-60
- Optimized geometries at the BP/def-TZVP level of theory with m4 grid.
- \Box ε_r dielectric constant set to ∞
- $\square H_2O \text{ from COSMOthermX database}$
- □ Henry's Law Constant expressed in MPa (the volatility constant H)
 → conversion to mol L⁻¹ atm⁻¹ (k_H)

Henry's law constants

Université

Henry's law constants

COSMOtherm V. 17 (December 2016)

Université

Note:

Université

de Lille

 \succ k_H(298K) (IONO₂) = 10⁶ mol L⁻¹ atm⁻¹

→ Virtual infinite solubility [5]: IONO_{2 (aq)} + H₂O_(aq) = HOI_(aq) + HNO_{3 (aq)}

20

[5] Saiz-Lopez et al., Atmos. Chem. Phys., 2014, 14 (23), 13119.

Henry's law constants

21

COSMOtherm V. 17

Université

Henry's law constants

Université

Reassessment of literature standard enthalpies of formation for INOx.

- Complete benchmark by performing CASPT2/CASSCF calculations,
- Estimate the corrections due to higher correlation methods such as CCSDT(Q) (CFour).
- ☐ Microhydration processes:
 - Extend study to $IONO_2 + n H_2O = IONO_2 nH_2O$ (n = 2, 3, ...)

□ Prediction of Henry's law constants for iodine-containing species.

Complete study by using SMD methodology as implemented in Gaussian16

Thank you for your attention

<u>Acknowledgment</u>: This work was part of the MiRE project (Mitigation of outside releases in case of nuclear accident), which is funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract "ANR-11-RSNR-0013-01". We appreciate also the support from PIA managed by the ANR under grant agreement "ANR-11-LABX-0005-01" called CaPPA (Chemical and Physical Properties of the Atmosphere), and, also supported by the Regional Council "Nord-Pas de Calais" and the "European Funds for Regional Economic Development". We thank Slovak Grant Agencies VEGA (Grant 1/0092/14) and APVV (Project APVV-15-0105) for support. This work was performed in the frame of the international collaboration agreement between IRSN, Comenius, Lille 1, and CNRS.